

Horizon 2020 LC-SPACE-04-EO-2019-2020
Copernicus Evolution – Research for harmonised and

Transitional-water Observation (CERTO)

Project Number: 870349

Deliverable No: D7.2 Work Package:

Date: 10-DEC-2020 Contract delivery due date 31-DEC-2020

Title: Solution Architecture Design Document

Lead Partner for
Deliverable

PML Applications

Author(s): Amy Westlake, Oliver Clements, Ben Calton

Dissemination level (PU=public, RE=restricted, CO=confidential) PU

Report Status (DR = Draft, FI = FINAL) FI

Acknowledgements
This project has received funding from the European Union's Horizon 2020 research and
innovation programme grant agreement N° 870349

 D7.2 Solution Architecture Design Document

Copernicus Evolution – Research for harmonised and
Transitional-water Observation (CERTO)

Page 2 of 12

Table of Contents

1 Executive Summary ... 4

2 Introduction .. 4

3 Context .. 5

3.1 Example Processing Chain – CALIMNOS ... 5

4 Deliverables & Milestones .. 6

5 Architecture .. 7

5.1 System Requirements ... 7

5.2 System Design .. 7

5.3 Technical Components ... 9

6 Conclusion ... 12

 D7.2 Solution Architecture Design Document

Copernicus Evolution – Research for harmonised and
Transitional-water Observation (CERTO)

Page 3 of 12

Reference Documents
RD1 CERTO Deliverable: D2.2 Technical requirements of the CERTO

prototype

RD2 CERTO Deliverable: D7.1 Initial Report on DIAS & Cloud Provider
Capabilities

Glossary

API Application Programming Interface

C3S Copernicus Climate Change Service

CMEMS Copernicus Marine Environment Monitoring Service

CLMS Copernicus Land Monitoring Service

CLI Command Line Interface

DIAS Data and Information Access Services

EO Earth observation

FTP File Transfer Protocol

HPC High Performance Computing

OGC Open Geospatial Consortium

OpenDAP Open-source Project for a Network Data Access Protocol

SaaS Software as a Service

SNAP The Sentinel Application Platform

VM Virtual Machine

WCS Web Coverage Service

WMS Web Map Service

 D7.2 Solution Architecture Design Document

Copernicus Evolution – Research for harmonised and
Transitional-water Observation (CERTO)

Page 4 of 12

1 Executive Summary

Water quality is a key worldwide issue relevant to human food consumption and production,
industry, nature, and recreation. The European Copernicus programme includes satellite
sensors designed to observe water quality and services to provide data and information to
end-users in industry, policy, monitoring agencies, and science. However, water-quality data
production is split across three services, Copernicus Marine, Copernicus Climate Change, and
Copernicus Land, with different methods and approaches used and some areas, notably
transitional waters, are not supported by any service.

The CERTO project aims to address this lack of harmonisation by undertaking research and
development necessary to produce harmonised water-quality data from each service and
extend Copernicus to the large number of stakeholders operating in transitional waters. The
main output of the project will be a prototype system that can be “plugged into” the existing
Copernicus services, developing Data and Information Access Services (DIAS), or popular
open-source software used widely by the community (e.g. SNAP).

This design document lays out the intended approach to the implementation of the improved
algorithms within the prototype and the processing infrastructure that will deliver the resulting
satellite data products. It should be viewed in conjunction with the technical requirements
document [RD1] produced in WP2 that provides details of the regions of interest, the variables
that will be produced, timeliness, data format, and data access methods.

2 Introduction

This document outlines the proposed architecture for the Software as a Service (SaaS) stack
for use within the CERTO project, henceforth referred to as the ‘CERTO prototype’. This
architecture will allow the processing “chunks” to be executed on any virtualised cloud hosting
infrastructure, for instance one of the Copernicus DIAS, to deliver Earth observation (EO)
water quality data products required in the case study regions. The architecture consists of
several parts:

 Workflow definition engine
 Runner, to send jobs to virtual machines
 User interface, allowing users to initiate and customise processing

By combining these concepts and technologies, the CERTO architecture will allow the creation
of processing systems, the dynamic execution of processing “granules” as well as the
provisioning of output data to the user. In the initial design, the user interface will not be
automated and will require CERTO processing partners to work with the prototype
development team, as outlined in [RD1].

 D7.2 Solution Architecture Design Document

Copernicus Evolution – Research for harmonised and
Transitional-water Observation (CERTO)

Page 5 of 12

3 Context

Within the Copernicus programme, water quality is monitored through three distinct services:
Copernicus Climate Change Service (C3S), Copernicus Marine Environment Service
(CMEMS), and Copernicus Land Monitoring Service (CLMS). C3S provides a global water
quality product focussing on oceanic and shelf water, CMEMS focusses on global data and
regional products for European seas, whilst the CLMS provides data for inland water bodies.
CERTO will build a prototype that will enable these services to be brought together, also
bridging the gaps in current data provision, providing water-quality data on all water bodies,
especially transitional waters in the coastal zone.

The production of EO data products results from the operation of processing chains; this is
the combination of a suite of software packages, libraries, and custom scripts drawn together
with a configuration that defines each step required to generate the products. Each of these
existing services have their own processing chains which are often executed on dedicated
high-performance computing (HPC) hardware with a closely coupled link between computing
infrastructure and the software that runs on it.

The CERTO prototype will develop a new processing chain which will take the best elements
from existing chains, plus the improved optical water type algorithms, the improved land-sea
interface/atmospheric correction techniques and indicators; this will be implemented using a
Software as a Service (SaaS) model capable of being run on almost any hosting infrastructure.
This will be achieved by creating a modular processing chain that can be “packaged” into a
series of loosely coupled containers, with all the software and processing tasks and their
dependencies included, which can be run independently from any hardware. Each container
or module will have clearly defined interfaces so that inputs and outputs of each element will
be interoperable.

3.1 Example Processing Chain – CALIMNOS
The Calimnos processing chain currently operated by PML is used to generate products for
CLMS and the ESA Lakes Climate Change Initiative project, as well as previous Horizon 2020
projects (EOMORES, TAPAS) and provides a solid foundation upon which to build. Calimnos
is being used to process data from OLCI at 300m resolution, and developments in the TAPAS
project have extended this further to allow processing of Sentinel-2 Multi-Spectral Imager
(MSI) data. Calimnos already has all the main functional elements of a processing chain
capable of producing CERTO products and extending this well developed and well tested
chain into a modular container-based SaaS will result in a powerful, yet flexible, solution.

 D7.2 Solution Architecture Design Document

Copernicus Evolution – Research for harmonised and
Transitional-water Observation (CERTO)

Page 6 of 12

Figure 1 - Calimnos processor overview

The Calimnos chain implements several steps to produce the final products. These include:

 Data discovery
 Data subsetting by target area (individual water bodies)
 Radiometric corrections
 Pixel identification and masking (e.g. land/cloud/water/ice)
 Atmospheric correction
 Optical water type classification
 Algorithm mapping and blending
 Uncertainty mapping
 Final product aggregation and mosaicing

A schematic overview of Calimnos is given in Figure 1 showing the software components that
are required to execute the processing chain. The architecture, as defined, provides a suitable
environment to execute CERTO processing elements such as the Calimnos chain outlined
above.

4 Deliverables & Milestones

Progress of the development of the prototype is tracked using deliverables and milestones.
Following the delivery of this architecture design document at month 12, the first release of
the software is due six months later at M18. An important milestone occurs at M24 with the
handover of the spectral water class libraries and optional algorithm matrix for implementation
into prototype. Two further releases of the software are then due; the 2nd release at M28 and
a final release at M36.

 D7.2 Solution Architecture Design Document

Copernicus Evolution – Research for harmonised and
Transitional-water Observation (CERTO)

Page 7 of 12

5 Architecture

5.1 System Requirements
The CERTO processing system has a set of defined user requirements as set out in [RD1]
and the aim of this section is to define the approach that will be taken to address these user
requirements translating them to technical requirements. The main requirements for
processing of data are:

 Easily configurable – the user should be able to select or define a spatial extent, the
variables required, and the temporal range

 Proximity to the required data – the processing should take place where the input data
are stored to avoid having to download and store large volumes of data

 Ability to run partners’ processing code – the prototype will be modular in construction
allowing partners to exchange modules for alternatives if required

 System should be deployable in any cloud system – this is a key consideration for the
successful operation of the prototype. The entire system should very easily be run on
any suitable cloud hosting provider’s infrastructure

 Make results available to the user – data products generated by the prototype will be
available for users in a variety of ways; details of data access methods can be found
in section 9 of [RD1]

As discussed in the report on cloud computing providers [RD2] there are several DIAS
operators with the data required by CERTO users. This leaves the much broader requirement
of being able to run/execute partner code. This requirement is met by utilising a containerised
code system, a method that provides a level of abstraction between the code/software and
the infrastructure in which it runs.

Containers provide a method whereby the code is given its own instance of a system (including
software and code libraries) self-contained and isolated within the container. For the CERTO
prototype we will deploy software utilising Docker and Singularity; these two software
packages do largely the same task, i.e. they provide a method to package software into
containers and a method to run the containers, and a further explanation of their use follows
in section 5.2.1.

The wider system should also be deployable and runnable on any of the available cloud
infrastructure available to CERTO partners. To satisfy this, the CERTO architecture focuses
on using the Linux operating system (available from all cloud providers). All the required
software can be installed an executed on the Linux operating system.

To automate the process of deploying the CERTO system an automatic script will be
developed using Ansible configuration files.

5.2 System Design
To satisfy the requirements as specified in user requirements document [RD1] and using the
software and tools discussed above we propose the following system design.

 D7.2 Solution Architecture Design Document

Copernicus Evolution – Research for harmonised and
Transitional-water Observation (CERTO)

Page 8 of 12

Figure 2 - System component overview

The system described in Figure 2 outlines the initial design for the CERTO processing
environment. The lower two tiers of the diagram refer to the cloud hosting provider and the
API they provide to programmatically deploy computing infrastructure and as previously
mentioned, there are differences in the approach taken by the different providers; therefore,
these interactions with this API will be provider specific. Once an API call has been made to
create a virtual machine all subsequent setup is agnostic of provider and fully automated.

The setup of a compute node is managed using Ansible which installs and configure Slurm,
Clyc and Docker in a fully automated manner, and with these software installed the node will
be ready to start running the CERTO processing chain. The processing chain software itself
will be deployed in containers which will be pulled from an external container registry, e.g.
Docker Hub or a GitLab Container Registry. It is anticipated that the processing environment
will change very little from the initial release, however, the processing chain will evolve
significantly and regularly. Taking this approach to system design ensures that changes to the
processing chain elements can be rapidly deployed without having to alter the processing
environment.

The processing infrastructure requires one perpetual VM to be available so that data
processing requests can be submitted at any time. This perpetual machine acts as the Cylc
workflow engine – to manage which tasks run and in what order – and as the Slurm controller

 D7.2 Solution Architecture Design Document

Copernicus Evolution – Research for harmonised and
Transitional-water Observation (CERTO)

Page 9 of 12

– to manage where the tasks run within the compute resource pool. Cylc and Slurm will work
together to manage the entire process from handling the initial request through to alerting the
user when the final products are available to view/download.

Providing access to the data that is produced by the CERTO prototype will utilise existing
standard interfaces. Data access methods are discussed in the user requirements document
[RD1] and include direct download via an API, WMS/WCS, and OpenDAP. There are a variety
of community tools and software that can interface with these protocols, such as ArcGIS,
QGIS, which would allow users the ability to visualise and further analyse the outputs.

5.3 Technical Components
This section details the technologies incorporated into the architecture including a short
description of each. The technical components are split into two categories; components
required to deliver the processing environment, and components of the processing chain.

5.3.1 Processing Environment Components

Cloud Hosting Provider API

Each of the commercial cloud computing providers and the DIAS providers offers an API which
can be used to automatically build a pre-defined computing infrastructure consisting of virtual
machines, networks, firewalls, load balancing, etc. The CERTO prototype will define example
configurations which can be used build a processing environment suitable for the CERTO
processor. The APIs provided by each of the cloud providers differ slightly in terms of function
names and arguments required, and each provider offers different specification options for
virtual machines, storage, and networking; therefore, the examples provided will be specific to
an individual provider – this is the only element of the prototype which is not provider agnostic.

Ansible

Ansible is an automation engine specifically designed for the provision of computing
infrastructure. Once the basic virtual machine has been configured with a minimal operating
system via the cloud providers’ API, Ansible will be used to install and configure all other
required software by taking a human readable script containing a list of software and
dependencies. This eliminates the need for manually installing multiple programs on different
machines and keeps work environments consistent. Ansible becomes especially useful when
operating in a cloud environment as it allows easy creation of virtual machines in a fully
automated way and, when they are no longer required, virtual machines can be deleted to
save expense.

In the CERTO prototype, the list of software packages will intentionally be very limited as the
software dependencies of the processing chain will be packaged in the containers. The
primary software will be Docker, Cylc, and Slurm plus their dependencies.

Docker/Singularity

Docker is an open platform that provides a method for deploying and running applications. It
offers the ability to package and run an application in a loosely isolated environment called a
container. Containers are lightweight objects which bring together only the elements required

 D7.2 Solution Architecture Design Document

Copernicus Evolution – Research for harmonised and
Transitional-water Observation (CERTO)

Page 10 of 12

for the application which runs in the container to operate fully: a very minimal operating
system, the application itself and its dependencies are the only contents. The container
interacts with the host machine’s kernel and can interact with other containers through well
defined channels. Docker provides an easy way to develop and deploy applications without
having to be concerned with dependency version conflicts. Singularity is a very similar
application to Docker and can be used as an alternative, especially in situations where greater
levels of user permission control are necessary.

In the CERTO prototype each of the processing chain elements will be containerised and each
step in the processing chain workflow will be a Docker (or Singularity) command.

Cylc

Cylc is a workflow engine that automatically executes tasks according to their individual
schedules and dependencies. Cylc workflows are configured by a single human-readable
config file supporting task inheritance and parameterization for larger, complex workflows and
it will be the primary method for defining the steps and the order of the tasks in the CERTO
prototype. For a more visual understanding and control over workflows, Cylc has a full
graphical user interface for visualization, runtime monitoring and control as well as a flexible
command-line interface.

Figure 3 - cylc suite user interface example

Within a Cylc workflow each step is a task which, when completed, can automatically move
onto the next task as appropriate. Cylc tasks can branch or fork, repeat, or trigger other tasks
depending on certain conditions; they can recover from any failures that occur, and potentially
run across multiple computer systems and resource managers.

 D7.2 Solution Architecture Design Document

Copernicus Evolution – Research for harmonised and
Transitional-water Observation (CERTO)

Page 11 of 12

Rose Suite

Rose Suite provides a toolkit to assist with the configuration of tasks. It works by providing a
graphical user interface to demonstrate tasks and their dependencies within a suite. Other key
features include version control, validating configurations and communicating with Cylc.

To create the tasks and workflow, a configuration file is created which contains the list of tasks,
what they do, and their dependencies or inheritance. It is also possible to set variables such
as time limits and memory resources.

In the CERTO prototype, Rose Suite will be an ancillary tool used by the development team
to create and validate Cylc configurations and will not form a part of the final delivered solution.

Slurm

Slurm is an open source, fault-tolerant, and highly scalable cluster management and job
scheduling system for large and small Linux clusters. As a cluster workload manager, Slurm
has three key functions. First, it allocates exclusive and/or non-exclusive access to resources
(compute nodes) to users for some duration of time so they can perform work. Second, it
provides a framework for starting, executing, and monitoring work (normally a parallel job) on
the set of allocated nodes. Finally, it arbitrates contention for resources by managing a queue
of pending work.

In the CERTO prototype, Slurm will control which elements of a Cylc configuration are run on
which computing infrastructure. A Slurm resource pool is a collection of computing resource
to which jobs can be submitted; in this case, it will be a number of virtual machines. When a
request for CERTO products is placed, a new Slurm job is created which triggers a Cylc
workflow to run in the defined resource pool.

5.3.2 Processing Chain Components

Satellite Passes Database/Catalogue

This database or catalogue contains details of all satellite passes, including the sensor name,
processing level, acquisition date/time, geometry and filename. This provides a method to
identify which satellite passes are required as inputs to produce CERTO products to satisfy a
user-defined request. In the current implementation of the Calimnos processing chain at PML
this exists as a PostgreSQL database which is queried using custom Python code; however,
there are external resources which can replicate this service. For example, CREODIAS
provide an API to allow users to find relevant files either by using a web interface or via the
command line.

Workspace Creator

A workspace is simply an allocation of storage where all input data (satellite data, ancillary
data, configurations) are stored, intermediate products generated by tasks in the processing
chain are stored, and is a space where log files record activity. The workspace creator defines
this storage ensuring that all required inputs are present as a prerequisite to processing
starting.

 D7.2 Solution Architecture Design Document

Copernicus Evolution – Research for harmonised and
Transitional-water Observation (CERTO)

Page 12 of 12

Sentinel Application Platform (SNAP)

SNAP is a Java based application developed by Brockmann Consult which offers a rich user
interface allowing users to interact with and manipulate satellite data, for example, spatial
subsetting, application of algorithms, or variable merging. SNAP is expected to provide the
primary route for end-users wishing to undertake their own processing using the CERTO
prototype.

It also provides a Graph Processing Framework for creating user defined workflows to
automate multiple sequential steps or to perform the same operations on multiple input files,
and a Graph Processing Tool (gpt) for automating these workflows via the command line.
SNAP includes the ability to add custom plugins which deliver features or functionality not
available by default.

In the CERTO prototype, SNAP will be primarily be used via the gpt command line tool where
it will be used for subsetting, flagging using the IdePix plugin, L2 product generation, merging,
and binning. SNAP, the IdePix plugin and all dependencies will be deployed in a single
container potentially with multiple entry point commands.

Polymer

Polymer is atmospheric correction software produced by Hygeos and written in Python. It will
be deployed in its own container to ensure that improvements to the software as a result of
efforts in WP5 are easily deployable within the processing chain without affecting other
elements of the chain. Ensuring this relatively fine-grained modularity will offer the opportunity
to test multiple versions of Polymer leaving the rest of the processing chain unaltered.

Custom Python Code

There are many elements within a processing chain that are unique, or at least highly
customised, which perform important functions in producing the final outputs. These are
generally created as Python libraries designed specifically for the purpose: for example,
functions to perform optical water type classification, adding relevant metadata,
stitching/merging files, and archiving. It is anticipated that all these custom functions will be
deployed in a single container in the CERTO prototype, however, if a single element sees
rapid or frequent updates it may be isolated in its own container.

6 Conclusion

The architecture outlined in this document is a first draft of the CERTO Software as a System.
The elements of the system, as defined, provide a flexible, agile architecture which can be
deployed onto public/research and commercial cloud environments. The architecture will be
analysed for fitness during the project and any required changes or additions will be made to
work with the CERTO processing partners. These versions of the architecture will be released
with their own accompanying document outlining the improvements made at each iteration.

The initial test deployment of the system will be on a Copernicus DIAS chosen based on the
available data and pricing models as outlined in [RD2].

	1 Executive Summary
	2 Introduction
	3 Context
	3.1 Example Processing Chain – CALIMNOS

	4 Deliverables & Milestones
	5 Architecture
	5.1 System Requirements
	5.2 System Design
	5.3 Technical Components
	5.3.1 Processing Environment Components
	5.3.2 Processing Chain Components

	6 Conclusion

