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1 Glossary 

C3S   Copernicus Climate Change Service 
CERTO  Copernicus Evolution – Research for Transitional-water 

Observation  
CLMS   Copernicus Land Monitoring Service 
CMEMS  Copernicus Marine Environment Monitoring Service 
c-means  Soft clustering scheme in which a data point can belong to more 

than one cluster 
EO   Earth observation 
ESA    European Space Agency 
k-means  Hard clustering scheme in which each datapoint belongs to a 

single cluster. 
OC-CCI  Ocean Colour Climate Change Initiative 
OLCI   Ocean and Land Colour Instrument 
OWT   Optical water type 
PCA Principal Component Analysis 
Rrs   Remote sensing reflectance 
WP   Work Package 
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2 Executive Summary 

This short report covers the progress of WP4 (Optical water type classification) of the 
CERTO project within the first year. It contains sections that: 
 

1) Summarise the findings of the review of the state of the art, giving suggestions 
as to what components need to be included in the final code package for 
release. 

2) Review the current status of the codebase that will be released as a deliverable 
later in the project. 

3) Give an overview of the optical water classes that have been created to date 
and how they were generated. 
 

The report also contains a summary timeline of the developments/work that will take 
place between now and the end of the project in the form of a Gannt chart and 
associated text.  
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3 Introduction 

This report covers the progress relating to CERTO work package 4: Optical water type 
classification, that has taken place within the first 12 months of the project. This 
progress has been slightly delayed due to the COVID-19 pandemic of 2020, but a 
significant amount of work has still been completed.  
 
Over the course of the CERTO project, work package 4 aims to: 

• Assess the current capabilities and limitations of optical water classification 
frameworks as utilised in the Copernicus services (C3S, CMEMS and CLMS). 

• Research and improve the key steps of classification methodology: classification 
metrics, clustering approach, pre-processing and standardization of spectra, 
qualitative and quantitative masking of outputs, algorithm output blending, uncertainty 
assignment and overall algorithm optimisation.  

• Create a multi-sensor optical classification scheme across complex coastal and 
transitional waters, allowing seamless switching between sensor inputs within the 
uncertainty limits defined by the user or downstream product requirements (e.g. 
indicators).  

The main body of the report is split into three main sections.  These sections (4, 5 and 
6) review the state of the art and how this has impacted development of the CERTO 
code, outline the growing codebase that will later be a WP deliverable, and discuss 
initial cluster set generation respectively. 
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4 Components of an optical cluster set – state of the art  

The division of waters into optical types is an established concept in marine sciences. 
Morel and Prieur (1977) distinguished two water types, those where bulk optical 
properties are dominated by phytoplankton and (Case-1) and those where bulk optical 
properties are uncoupled from phytoplankton (Case-2). With the introduction of 
multidimensional clustering techniques applied to remote sensing data (Moore et al 
2009), this classification of waters has become non-binary with >10 optical water types 
(OWT) identified in both open-ocean (Jackson et al., 2017) and inland-water 
(Spyrakos et al., 2018).    
 
Within the context of this document optical water class sets use fuzzy membership (c-
means) rather than hard membership (k-means) classification schemes, meaning that 
classified spectra are assigned a membership between 0 and 1 for each class in the 
set. 
 
Class sets are defined by a number of wavelengths (dimensions), with each class 
having a centre and domain.  In 3-dimensional space this is easy to visualise as a 
centroid and volume.  There is also the requirement to define a distance metric with 
which to compare a given spectrum to each class in the set.  This will be discussed in 
section 4.1.1. 
 
The task of reviewing all components of the clustering and classification 
methodologies is a significant undertaking and was the major component of Task 4.1.  
In order to be of operational use for global remote-sensing any techniques and 
approaches used must be robust enough for dealing with high volumes of 
multidimensional data. The generation of optical water class sets from remote sensing 
derived training datasets, which can contain millions of spectra, imposes 
computational limitations on the suite of clustering metrics that can be implemented.  
It is also important that the use of metrics for the creation and application of a class 
set is sufficiently automated and reproducible that it requires minimal expert input.    

4.1.1 Similarity metrics between observations and type spectra 

Clustering algorithms generally aim to partition data into groups (or clusters) such that 
similarity of data objects within each cluster is maximized while at the same time 
minimizing the similarity of data objects among clusters. Selection of a quantification 
method to measure how similar or dissimilar data objects are from one another is a 
fundamental step in this process. The fuzzy c-mean algorithm employed by Moore et 
al. (2001) and Jackson et al. (2017) to create optical water type classes from Ocean 
Colour data have relied upon the Euclidean distance metric during cluster formation 
optimization, with membership values being calculated after cluster formation using 
the Mahalanobis distance. Fuzzy c-means clustering on Euclidean distance has thus 
far proved to be the computationally lightest solution but limits the possible cluster 
shapes in multidimensional space, thus potentially hindering full optimization of data 
object cluster formation (Gueorguieva et al., 2017). Fuzzy c-means clustering using 
other distance metrics have been proposed in recent years (Cebeci, 2020), and will 
be explored to test for improved algorithm performance. An overview of some of the 
most common distance metrics follows. Note that ‘cluster prototype’ is used to refer to 
test clusters formed during the cluster formation optimization process. 
Euclidean distance  



7 
 

This metric is a special instance of the Minkowski distance. Setting p=2 in the following 
general equation: 

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋,𝛭𝛭) = ��|𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑖𝑖|𝑝𝑝
𝑛𝑛

𝑖𝑖=1

�

1 𝑝𝑝�

(1) 

 
where 𝑋𝑋 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) is a data object in n-dimensional space (e.g. a given raster 
pixel of multispectral reflectance data with n bands or channels) and 𝛭𝛭𝑐𝑐 =
(𝜇𝜇𝑐𝑐1,𝜇𝜇𝑐𝑐2, … , 𝜇𝜇𝑐𝑐𝑐𝑐) is the centroid of cluster prototype c formed during the optimization 
process and 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋,𝛭𝛭) then represents the Euclidean distance (a simplified 
example would be the well-known Pythagorean distance between two points in a 2-
dimensional space) between the data object and the cluster prototype centroid. Note 
that setting p=1 will provide the Manhattan (or city-block) distance, but this metric is 
not presented in any more detail here. Utilizing Euclidean distance while optimizing 
cluster formation inherently assumes hyperspherical cluster shapes (Gueorguieva et 
al., 2017), which may not be the case across different water classes. 
 
Mahalanobis distance 
Here the metric can be understood as representing the distance between a data 
object and a cluster prototype centre in terms of standard deviations for that 
particular cluster prototype. Taking again 𝑥⃗𝑥 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)𝑇𝑇 a data object in n-
dimensional space (this time represented using vector notation) and 𝜇𝜇𝑐𝑐����⃗ =
(𝜇𝜇𝑐𝑐1,𝜇𝜇𝑐𝑐2, … , 𝜇𝜇𝑐𝑐𝑐𝑐)𝑇𝑇 the center of cluster prototype c 

𝐷𝐷𝑚𝑚𝑚𝑚ℎ(𝑥⃗𝑥, 𝜇⃗𝜇) = �(𝑥⃗𝑥 − 𝜇⃗𝜇)𝑇𝑇𝑆𝑆−1(𝑥⃗𝑥 − 𝜇⃗𝜇) (2) 
 
where 𝑆𝑆−1is the inverse of the covariance matrix 

𝑆𝑆 = �
𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥1, 𝑥𝑥1) ⋯ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥1, 𝑥𝑥𝑛𝑛)

⋮ ⋱ ⋮
𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑛𝑛, 𝑥𝑥1) ⋯ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑛𝑛, 𝑥𝑥𝑛𝑛)

�  (3) 

 
𝐷𝐷𝑚𝑚𝑚𝑚ℎ(𝑥⃗𝑥, 𝜇𝜇) then represents the mahalanobis distance. As mentioned above, an 
intuitive understanding of this metric is that similarity to the cluster prototype centre is 
represented in terms of standard deviation distance along each of the 
multidimensional axes. This allows for elliptical cluster shapes during cluster 
optimization, which may better capture large variations in certain reflectance bands for 
some nearshore or river water optical water type classes.  
 
Angular distance (and the closely related cosine similarity metric) 
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This metric is based on the angle formed between the multidimensional vectors of a 
data object and a cluster prototype centre. An example in 2-dimensions is shown in 
Figure 1, where 𝑋𝑋 = (𝑥𝑥1, 𝑥𝑥2) is the data object, 𝛭𝛭𝑐𝑐 = (𝜇𝜇𝑐𝑐1,𝜇𝜇𝑐𝑐2) the centroid of cluster 
prototype c formed during the optimization process and α the angle between these 
two vectors. Taking 𝑋𝑋 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) a data object in n-dimensional space and 𝛭𝛭𝑐𝑐 =
(𝜇𝜇𝑐𝑐1,𝜇𝜇𝑐𝑐2, … , 𝜇𝜇𝑐𝑐𝑐𝑐) the cluster prototype c centre 

𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎(𝑋𝑋,𝛭𝛭) = 1 −
cos−1(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

𝜋𝜋
 (4) 

Where 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋,𝛭𝛭) = cos(𝛼𝛼) =
∑ 𝑥𝑥𝑖𝑖𝜇𝜇𝑖𝑖𝑛𝑛
𝑖𝑖=1

�∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1 �∑ 𝜇𝜇𝑖𝑖2𝑛𝑛

𝑖𝑖=1

 (5) 

𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎(𝑋𝑋,𝛭𝛭) then represents the angular distance as a proper distance metric that 
meets the same mathematical criteria for the other metrics listed here. This metric 
would have the benefit of allowing for even more flexibility in terms of possible 
cluster shape, since data objects lying along a similar multidimensional vector would 
be clustered similarly regardless of their individual vector magnitude (which may 
often be the case in more highly variable nearshore or river water reflectance 
signatures). While this flexibility is likely quite desirable, it does mean that there is a 
stage of information loss in the clustering (total reflectance, or integrated brightness) 
plays no role in the clustering. 
 

4.1.2  Level of fuzziness used for classification 

The level of fuzziness (𝑚𝑚) used in the clustering of multidimensional data is a 
parameter that controls the relative weighting placed on the squared distance from 
each point to the centre of the cluster.  The fuzziness level can be any value ≥1 where 
a value of 1 produces fully ‘hard’ clustering (k-means) and increasing fuzziness levels 
will degrade (blur, defocus) membership towards the fuzziest state. No theoretical or 
computational evidence distinguishes a single, optimal fuzziness level and recent 
studies have looked to optimize this parameter on an application specific basis (Bi et 
al 2019).  The broad range of useful values for fuzziness seems to be 1 to 30 or so 
(Bezdek, 1984) and in the context of ocean-colour remote sensing it is considered to 
lie between 1.5 and 3.0 (Bi et al, 2019).   Fundamentally the value used should be tight 

Figure 1: Diagrammatic illustration of angular distance in 2-dimensional space. 
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enough to allow interpretation of different and distinct clusters while being fuzzy 
enough to allow coverage of the global optical diversity. 
 
There has been some discussion of automatically/computationally optimising 
fuzziness factors within the genetics community (Dembele, 2008) and this was trialled 
in the water-colour realm by Bi et al. (2019) showing that for multiple inland Chinese 
water bodies, an 𝑚𝑚 value of 1.36 gave a satisfactory set of seven distinct clusters.  The 
code associated with this automated fuzziness determination has been made openly 
available and we aim to include this functionality within the CERTO system.  As shown 
in section 5.1, the current code base can perform analyses with variable fuzziness 
factors, but the automated assignment of this value is not completed yet.  

4.1.3 Spectral transformation  

Modern remote sensing satellites such as OLCI have many wavebands in the visible 
range of the spectrum.  One issue with c-means clustering is that it can become 
computationally prohibitive to cluster high dimensionality data for millions of pixels in 
search of a large (10 or more) clusters.  One approach used to reduce the 
computational expense is to perform transformations to the Rrs spectra before 
clustering.  One example of this is normalisation, which pushes the focus of the 
optical clustering to differentiate based on spectral shape rather than reflectance 
magnitude.  Mélin et al. (2015) reduced the first order variability in reflectance to 
focus on the reflectance spectral shape by using the integrated value (i.e., the 
surface below the spectrum, Lubac & Loisel, 2007; Vantrepotte et al., 2012) following 
the formula (for each wavelength λ):  

𝑟𝑟𝑛𝑛(𝜆𝜆) =
𝑅𝑅𝑟𝑟𝑟𝑟(𝜆𝜆)

∫ 𝑅𝑅𝑟𝑟𝑟𝑟(𝜆𝜆)𝜆𝜆2 
𝜆𝜆1 𝛿𝛿𝛿𝛿

 (6) 

Where 𝑟𝑟𝑛𝑛(𝜆𝜆) (in units of nm−1) indicates the normalized spectrum obtained by 
integration between 𝜆𝜆1 (412 nm) and 𝜆𝜆2 (670 nm) computed by trapezoidal integration. 
The latest OC-CCI reprocessing version has moved from non-normalised (Jackson, 
et al 2017) to normalized optical waters classes (Jackson et al. 2020) for the global 
ocean (14 classes in this case) using six optical wavelengths.  It has not yet been 
determined if this is suitable for data streams that are composed of many more 
wavelengths (such as the Oa1 to Oa11 bands of OLCI). We intend to allow 
normalisation to be an option within the CERTO classification scheme such that it can 
be turned on or off.  This functionality has already been codified (using the spectral 
integral) and will be included in the final release. 
 
One issue with normalisation is that there can be a loss of information at the 
normalisation stage.  An alternative transformation would be to use PCA analysis to 
create a new set of orthogonal vectors (with a lower dimensionality than the Rrs bands) 
which can be used to cluster the data.   The advantage of using the PCA 
transformation is that is minimises information loss (if a sufficient number of PCA 
components are included) and allows a relatively simple reverse transformation back 
to Rrs values.  This transformation has also been codified and will be included in the 
final release. 
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4.1.4 Hybrid or hierarchical clustering methods  

The use of hierarchical, partitional and hybrid clustering techniques present a possible 
solution to creating comparable optical water classes across different sensors.  The 
use of a hierarchical scheme is currently being tested for implementation within the 
CMEMS processing chain for the Mediterranean waters.  In previous processing 
versions the CMEMS Mediterranean processing chain has used a relatively simple 
portioning of waters into case I and case II with a chlorophyll-a algorithm designated 
for each case (Volpe et al., 2019).  The new “CMEMS Mediterranean” approach 
follows Mélin et al. (2015) by using normalized by the integrated spectral values. The 
optical water class set consists of 6 classes (created using k-means clustering) with 
one class composed of complex water spectra characterized by the Rrs peak at 55x 
nm. The others five classes are considered open ocean waters for which the Max Band 
Ratio (MBR) approach is applicable.  This technique shows excellent results 
discriminating complex waters from Case I waters, but leads to some misclassification 
in areas with high chlorophyll concentration due to phytoplankton blooms (e.g. Gulf of 
Lions) or mixing (e.g. Alboran Sea) that can be erroneously identified as Case II 
waters.  In fact, comparing normalized Rrs spectra of a bloom area with normalized Rrs 
spectra of a complex coastal area, gives results very similar in the shape and values. 
On the other hand, without any normalization, Rrs spectra of a bloom area show low 
values with respect Rrs spectra of a complex costal area. Hence an additional 
classification step is added in which the Euclidian distance between measured Rrs 
spectra and non-normalized class spectra determines if the water is truly a member of 
the “complex” water class (if this Euclidean distance is lower than a threshold value, 
i.e 1.5). 
 
This hybrid approach therefore uses both normalised and non-normalised spectra 
within its cluster designation and can be thought of as a hierarchical cluster approach.  
This approach of using additional spectral properties (others could be total spectral 
brightness or spectral angle) to distinguish between broad classifications such as 
bright and dark waters (which can be done irrespective of the number of visible bands 
available) allows the use of a hierarchy of classes.  This broad separation of waters is 
a tactic that can be harmonised across multiple sensors.  
 
We have not yet codified hierarchical clustering into the CERTO code base, but we do 
intend to implement this soon, especially as we move towards the multi-sensor 
(differing wave band sets) analysis. 

4.1.5 Including uncorrected top-of-atmosphere and Rayleigh-corrected 
radiance alongside atmospherically corrected data.  

Currently the optical water class generation and application is performed after the 
remote sensing data have undergone a number of processing stages such as 
atmospheric correction and cloud masking.  It is technically possible to perform 
cluster analysis and classification at any stage in the processing chain and one 
candidate that has been posited is to generate clusters at the top-of-atmosphere 
(TOA) stage.  This would mean that the cluster set would have to capture a greater 
level of spectral variance, which increase the complexity of the cluster generation.  
Though a benefit of this might be that we would be able to assign optical classes to 
‘components’ such as clouds, sea ice, haze etc it also means that for a given number 
of classes we would have less classes to distinguish between water types as a 
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number would likely be dominated by atmospheric components (as the atmospheric 
signal typically accounts for around 90% of the TOA signal.  Currently we would not 
recommend trying to identify optical water types using TOA data, though it might be 
of use to have two stages of optical classification: one at the TOA stage to 
distinguish atmospheric optical classes and one at the post-atmospheric correction 
stage to identify optical water classes.  This has not yet been codified into the 
CERTO codebase and though we may test this sort of dual stage classification within 
CERTO it is unlikely to be sufficiently mature to be released in the final code base.  

5 Code developments 

The codebase for WP 4 has seen development in two main areas.  The first is the 
creation of a python package that will be used for the generation and application of 
optical water types to remote-sensing reflectance data.  This package is designed to 
have a structure similar to the packages of scikit and this will allow users to create and 
apply OWT sets with relative ease.  The second area of development has been on 
automated regional summary report generation in the context of optical diversity.  This 
means that given a bounding region of interest (such as for one of the six CERTO user 
case study areas) a user can automatically generate a summary report of the optical 
diversity of the region, in a standardised format, with figures showing geographic and 
temporal features in the optical characteristics of the area. 

5.1 OWT package 
The OWT package is built to follow the scikit-learn syntax.  This means that it has a 
‘generate’ and ‘apply’ functionality and can be easily integrated into scikit-learn 
workflows.  This gives us a consistent, simple and potentially even familiar API for 
users. In addition, it enables us to easily vary the fitting parameters and normalisation 
schemes and compare them against one another in a consistent manner.  
 
In this manner, users can build their own pipelines in order to cluster their data (this is 
the generation functionality). Alternatively, they can load a pre-fitted pipeline and 
predict the membership of new data to the existing clusters (the application 
functionality). 

Persistence of models can be achieved through storing the fitted pipelines onto disk. 
In addition, the model parameters used to generate a given dataset will be saved 
inside the netcdf as metadata. This includes fitting parameters as well as fitted 
parameters of intermediate steps, such as normalisation values and principal 
components. 

The generator creates a cluster set using a multi-metric assessment and a 
configuration defined by the user (normalisation or not, wave band set etc).  The apply 
function then uses a generated cluster set to classify input data. 
 
Below is a figure showing the example output from the cluster generation process 
(Figure 2).  The figure shows four panels with metric scores against possible number 
of clusters.  The four panels from left to right correspond to four different fuzziness 
factor values (as shown on the top bar from 1.5 to 5).  The four coloured sets of points 
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in each panel correspond to four different metrics of cluster set performance (Xie beni 
index, Fuzzy partition coefficient, Silhouette score and the Davies Bouldin metric) with 
the error bars showing the variance generated by bootstrapping the analysis with 5 
subsets of the total sample. For a set of 𝐾𝐾 clusters and a dataset consisting of 𝑁𝑁 data 
points the Xie Beni index is defined as: 

∁=  
1
𝑁𝑁

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
min
𝑘𝑘<𝑘𝑘′

𝛿𝛿1(𝐶𝐶𝑘𝑘 , 𝐶𝐶𝑘𝑘′)2
 (7) 

where 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 is the pooled within-cluster sum of squares (the sum of within-cluster 
dispersions for all clusters), 𝐶𝐶𝑘𝑘 and 𝐶𝐶𝑘𝑘′ refer to clusters and 𝛿𝛿1 is the single-linkage 
distance, defined as: 

𝛿𝛿1 =  min
𝑖𝑖∈𝐼𝐼𝑘𝑘
𝑗𝑗∈𝐼𝐼𝑘𝑘′

𝑑𝑑(𝑀𝑀𝑖𝑖,  𝑀𝑀𝑗𝑗) (8)
 

with  𝑀𝑀𝑖𝑖 ,  𝑀𝑀𝑗𝑗 being pairs of observation points. 
 
The Fuzzy Partition coefficient (𝐹𝐹) was defined by Bezdek (1981): 

𝐹𝐹 =  
1
𝑁𝑁
���𝜇𝜇𝑖𝑖𝑖𝑖�

𝑚𝑚
𝑁𝑁

𝑖𝑖=1

𝐾𝐾

𝑗𝑗=1

 (9) 

 
The Silhouette score is calculated as: 

𝒞𝒞 =  
1
𝐾𝐾
�𝔰𝔰𝑘𝑘

𝐾𝐾

𝑘𝑘=1

 (10) 

where 𝔰𝔰𝑘𝑘 is the per-cluster mean silhouette derived from all silhouette widths (𝑠𝑠) : 

𝔰𝔰𝑘𝑘 =
1
𝑛𝑛𝑘𝑘

�𝑠𝑠(𝑖𝑖)
𝑖𝑖∈𝐼𝐼𝑘𝑘

 (11) 

 
The Davies Bouldin index is calculated as: 
 

𝐷𝐷𝐷𝐷 =  
1
𝐾𝐾
�𝑀𝑀𝑘𝑘

𝐾𝐾

𝑘𝑘=1

=  
1
𝐾𝐾
�max

𝑘𝑘′≠𝑘𝑘
�
𝛿𝛿𝑘𝑘 + 𝛿𝛿𝑘𝑘′
Δ𝑘𝑘𝑘𝑘′

�
𝐾𝐾

𝑘𝑘=1

 (12) 

 
where  𝛿𝛿𝑘𝑘is the mean distance between the points belonging to cluster 𝑘𝑘 and the 
cluster barycentre. 
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Figure 2: Cluster set scoring across a range of metrics, fuzziness values and number of clusters.  
Metrics are shown by colour Xie-Beni index (blue), Silhouette index (orange), Fuzzy partition 
coefficient (green) and Davies Bouldin index (red). 

A cluster set generated by this code for OLCI is shown in section 6 alongside some 
simple maps of dominant clusters. 
 

5.2 Regional characterisation reports 
Work is also ongoing to develop a scheme for the automated generation of regional 
characterisation reports.  These reports will allow the rapid assessment of a region of 
interest, such as the case study regions of CERTO.  Though the final report structure 
is not yet precisely confirmed an example outline is given below. 
   
The top-level structure of the report is organised such that the user defines the area 
of interest and then runs the report template.  This will then perform a set of processing 
and plotting operations to outline the optical characteristics of the region in a temporal 
and geographic context. 
 
These reports will allow more informed and targeted sampling within field campaigns 
and fixed moorings.  The standardised format will also make it simpler to compare 
across multiple regions for a given trait or set of traits.  The reports are built within a 
jupyter notebook which allows both the text and code sections to be version controlled, 
while keeping the report generator open and simple to share. 
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6 Initial cluster sets 

We have begun generating potential water class sets for testing at the global and 
regional level using the current developmental version of the codebase.  An example 
of such a class set for OLCI is shown below alongside some examples of applying the 
cluster sets at the regional level.  
 
The latest optical water type set generated for OLCI makes use of the full range of 
optical wavebands (11 in total) and was created by subsampling from 6000 OLCI 
granules taken from across the globe and spanning the five-year OLCI archive.  A 
random subset (10,000 spectra) was then sampled from the training dataset and was 
used to create a set of ten clusters.  We intend to increase this number in the future 
but for now this is a sufficient balance between capturing spectral variation and 
computation time. 

 
Figure 3: OLCI optical water class set generated from global dataset of 6000 OLCI tiles using 11 
visible wavebands. 

The clusters are actually defined in principle-component-space but as the principal 
components are known (and defined within the cluster set file) we can simply 
reconstruct the corresponding Rrs spectra for each cluster (as shown in Figure 3). 
As expected, the primary transition across the optical water class set is from blue 
dominated to green dominated spectra (comparing water classes 6 and 8 for 
example).  The principal component analysis shows that >95% of the sample variance 
is contained within 3 principal components, which follows the paradigm of considering 
ocean optical properties as a result of the relative influence of algal absorption, non-
algal absorption and particulate scattering.  However, this cluster set does appear to 
show a stronger distinction in the red bands than seen in previous cluster sets such 
as those used in OC-CCI.  This could be due to the high density of wavebands in the 
665-709 region.   
 
Applying this class set to an example OLCI granule in the Indian Ocean (Figure 4) we 
can see that the dominant optical water class patterns highlight ocean features such 
as eddies and currents, coastal ‘hotspots’ and the impact of islands such as the 
Maldives. 
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Figure 4: Map of the dominant optical water class per pixel when the example OLCI cluster set 
is applied to a series of OLCI granules taken on 2017-01-05 and processed using POLYMER 
atmospheric correction. 

7 Development timeline 

Now that we have an operational scikit-learn style operator and have generated OLCI 
classes using it we will begin to test the cluster generation with additional sensors 
(such as sentinel 2) and provide regional cluster sets for each of the case study areas.   
 
This should be completed within the next 4-6 weeks and then we will aim to interpret 
the water class sets in a water quality context with each of the case study area 
experts/partners.   
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Figure 5: Gantt chart showing developement timeline of WP4 over the rest of the CERTO project. 
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